翻訳と辞書
Words near each other
・ Functional molecular infection epidemiology
・ Functional morpheme
・ Functional movement
・ Functional murmur
・ Functional near-infrared spectroscopy
・ Functional neuroimaging
・ Functional Neurological Disorder
・ Functional notation
・ Functional organization
・ Functional Party of Struggle
・ Functional periodicity
・ Functional Plant Biology
・ Functional polymers
・ Functional predicate
・ Functional prerequisites
Functional principal component analysis
・ Functional profile
・ Functional programming
・ Functional protocol
・ Functional psychology
・ Functional reactive programming
・ Functional renormalization group
・ Functional requirement
・ Functional Requirements for Authority Data
・ Functional Requirements for Bibliographic Records
・ Functional residual capacity
・ Functional response
・ Functional safety
・ Functional selectivity
・ Functional sentence perspective


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Functional principal component analysis : ウィキペディア英語版
Functional principal component analysis
Functional principal component analysis (FPCA) is a statistical method for investigating the dominant modes of variation of functional data. Using this method, a random function is represented in the eigenbasis, which is an orthonormal basis of the Hilbert space ''L''2 that consists of the eigenfunctions of the autocovariance operator. FPCA represents functional data in the most parsimonious way, in the sense that when using a fixed number of basis functions, the eigenfunction basis explains more variation than any other basis expansion. FPCA can be applied for representing random functions, or functional regression and classification.
==Formulation==
For a square-integrable stochastic process ''X''(''t''), ''t'' ∈ 𝒯, let
: \mu(t) = \text(X(t))
and
: G(s, t) = \text(X(s), X(t)) = \sum_^\infty \lambda_k \varphi_k(s) \varphi_k(t),
where ''λ''1 ≥ ''λ''2 ≥ ··· ≥ 0 are the eigenvalues and ''φ''1, ''φ''2, ... are the orthonormal eigenfunctions of the linear Hilbert–Schmidt operator
: G: L^2(\mathcal) \rightarrow L^2(\mathcal),\, G(f) = \int_\mathcal G(s, t) f(s) ds.
By the Karhunen–Loève theorem, one can express the centered process in the eigenbasis,
: X(t) - \mu(t) = \sum_^\infty \xi_k \varphi_k(t),

where
: \xi_k = \int_\mathcal (X(t) - \mu(t)) \varphi_k(t) dt

is the principal component associated with the ''k''-th eigenfunction ''φ''''k'', with the properties
: \text(\xi_k) = 0, \text(\xi_k) = \lambda_k \text \text(\xi_k \xi_l) = 0 \text k \ne l.
The centered process is then equivalent to ''ξ''1, ''ξ''2, .... A common assumption is that ''X'' can be represented by only the first few eigenfunctions (after subtracting the mean function), i.e.
: X(t) \approx X_m(t) = \mu(t) + \sum_^m \xi_k \varphi_k(t),
where
: \mathrm\left(\int_ \lambda_j \rightarrow 0 \text m \rightarrow \infty .

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Functional principal component analysis」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.